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FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSF C) and created
to investigate the effectiveness of software engineering technologies when applied to the
development of applications software. The SEL was created in 1976 and has three primary
organizational members:

NASA/GSFC, Information Systems Center
The University of Maryland, Department of Computer Science
Computer Sciences Corporation, Development and Sustaining Engineering Organization

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effects of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL
homepage at:

http://sel.gsfc.nasa.gov/

or by writing to:
Systems Integration and Engineering Branch
Code 581
Goddard Space Flight Center
Greenbelt, Maryland 20771
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PREFACE
By Martha Szczur

Welcome and Al Diaz Introduction

23rd GSFC Software Engineering Workshop

December 2, 1998

Hi, I’'m Marti Szczur, the Chief of the Information Systems Center, which is one of the organizations
within the Applied Engineering & Technology Directorate (AETD).

Since last year’s workshop, Goddard has undergone a significant reorganization. AETD is one of two new
directorates, made up of over 1300 Goddard engineers, including computer science professionals. The
engineers are matrixed or assigned to flight projects, science directorate activities and/or advanced
technology tasks. ISC is one of the engineering groups within AETD, and as the name implies, the
Information System Center is heavily vested in all aspects of software (from design, development, testing,
validation, integration, maintenance, and including assessment of existing software products.)

The software is applied to a broad spectrum of mission and science systems ... from command & control
of the spacecraft (both on-board and on the ground) to planning/scheduling, guidance & navigation
systems, communication support, to the processing, archival, & distribution and analysis of science data
... Software is one of the key business products within the I1SC.

And thus, my interest in software engineering is extremely high. In fact, the Software Engineering Lab,
the group hosting this workshop, resides within the ISC, and I am a strong supporter of the research they
conduct. I'm also interested in their expanding their software engineering knowledge and influence across
Goddard, as well as NASA. Because of my vested interest in SE as a computer science discipline, it is

. . . . ,rd .
quite a privilege for me to be opening this 23~ Software Engineering workshop.
I’d like to mention a recent exercise at Goddard, which involved looking ahead to the year 2003 and
defining the type of work and missions in which we would be involved. And, the future missions identified
have increasing software complexity, such as
- operation of multiple spacecraft and constellations
- distributed sensing systems
- increased on-board science processing and autonomous operations

- higher volume/higher rate of science data to process, manage, archive and distribute

- collaborative, distributed engineering and science computing environments to improve formulation and
implementation of missions, as well as to foster collaborative scientific discovery.

To meet these software challenges, It is critical that advancements in software engineering be made.
Today, the software industry has not been overly successful in consistently developing software systems
that are within budget or on time or which meet all the requirements.

For example, in a Standish Group’s 1994 study*, based on an evaluation of 8330 industry software
projects, only 16% were actually successful in being on-time, in budget and meeting all originally-specified
requirements,

A staggering 53% were “challenged”. On an average, they were (1) 189% over budget, (2) had time
overruns of 222% and (3) only 61% of originally specified requirements were met.



The other 31% of the software projects were canceled somewhere during development.

Thus, with the increase of NASA mission’s dependency on software and the increase in its’ complexity, a
focus on producing quality software, and thus software engineering, I feel, becomes a critical necessity.

And, it is many of you in this room who will move us in a direction to enable a time when we can develop
software systems which are bug-free, reusable, delivered on schedule and within cost while meeting all
requirements...on a consistent basis.

Many of the presentations over the next two days pertain to advances and lessons learned which are directly
related to the software engineering challenges we face. Ilook forward to listening and learning from the
diverse collection of international experts represented here today.

I have the privilege this morning to be introducing, Al Diaz, who is the Director of Goddard Space Flight
Center.

We are very lucky at GSFC because Al, I believe more than any other Center Director to date, has an
appreciation of the critical role software ... and in particular QUALITY software ... plays in the success of
Goddard’s missions, and he recognizes its increasing role in the future.

So, with pleasure, I welcome Al and thank him for agreeing to take time from his incredibly busy schedule

d
to open the 23r Software Engineering Workshop.

* NOTE: The Standish Group International, Inc. is a market research and advisory firm specializing in
mission-critical software and electronic commerce. Information about this study can be found on their web
site: http://www.standishgroup.com Go to the option titled “Chaos Report.”




BACKGROUND

The Goddard Space Flight Center (GSFC) Strategic Implementation Plan (SIP) was published in January
1997. Since the plan was published several centerwide activities have been initiated. One in particular
known as “Project Goddard” is responsible for one of the most significant changes that have occurred in
Goddard’s history. This was the reorganization of Codes 500 and 700. The reorganization [Reference 1]
was the result of much planning that began with an assessment of the external environment and the writing
of Goddard’s SIP followed by definition of macro level processes from which an organization that could
support those processes was derived. In today’s environment, performance, cost and schedule are three
critical elements to the successful execution of a program. The requirements have become an integral
factor throughout the development process making it necessary for close customer involvement. The
reorganization was primarily structured to more effectively focus engineering talent into teams drawn from
the different disciplines. This would facilitate being able to provide products and services which support
mission needs aligned with customer requirements.

INFORMATION SYSTEMS CENTER

The ISC was created as part of the Goddard reorganization and was located within the Applied Engineering
and Technology (AET) Directorate. Why create an ISC? The creation of ISC was to (1) focus expertise
and leadership in information system development. (2)Promote organizational collaboration, partnerships,
and resource sharing. (3)Stimulate design /development of seamless end-to-end flight and ground systems.
(4) Enable flexibility to effectively support many simultaneous projects by improved access to critical mass
of discipline expertise. (5)Enhance career growth and opportunities including multi-disciplinary
opportunities and (6) to improve communications among information system professionals. Figure 1, is an
Organizational Chart of Goddard after the reorganization showing AETD and System, Technology, and
Advanced Concepts (STAAC) as new organizations.
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Figure 1.



Figure 2. Shows the AETD Organization, the Director is Brian Keegan.
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Figure 2.

There are five Engineering Centers within the AETD which are equivalent to Division level organizations.
Each of these engineering centers is focused on a particular engineering discipline. The ISC (Code 580) is
the engineering center focused on software engineering and computer science. The ISC mission is
[Reference 2] “to provide high value information systems products and services and to advance information
technologies, which are aligned with customer needs.” The ISC organization is shown in Figure 3 below.

ISC has 8 Branches in which each Branch is focused on critical software engineering domains that cover
the full lifecycle phase of a mission. Table 1, represents each of the Branches in the ISC and highlights
their major functional areas, products and services, customers and projects supported. More detailed
information can be found at the ISC Website, http://www.isc.nasa.gov. ISC is predominantly a matrix
organization in that many of the Branch personnel 581, 584, 586 are co-located with the project offices.
The process in which personnel are assigned is accomplished annually when the projects submit Statements
of Work (SOW) to the ISC for services. Personnel with the necessary skills and experience are then
assigned to the project from 1 to several years dependent on the duration of the project.




580 / Information Systems Center Branch Structure

Branch

Functional Area/Products

Services

Customer Projects/Org

581/ Syslems Integration and
Engincering
Lestve Bovee, Howard Kea,

Murgoras Candfiold

End-to-cnd data systems
engineering of ISC mission
systems development activitics.

Mission dircctors, ground sys/flight
ops management, sys. eng., flight prep
support, SW eng, Sys I&T, AO prep

EOSDIS. HST. STAAC. NGST,
MAP. IMAGE. TRACE, POES,
AGS, on-orbit missions

582/ Flight Software
Elvine Shell, Rav Whulev, Lisa Shears

Embedded spacecraft, instrument
and hardware component
softwares; FSW testbeds

End-to-end FSW development;
simulation siw; spacecraft
sustaining cngineering

HST. MAP, TRMM. EO-1.
SMEX. SMEX-lite, SPARTAN.
EOS AM. 'Chem, GLAS,
XRS XDS, POES, NGST, XTE,
EUVE. GRO

583 / Mission Applications
Henry: Murray, Scott Green

Off-line mission data systems
{c.g., Command man., s/c mission
and science P&S, GN&C, NCC

Sys. eng.& implementation, COTs
application, testbeds for concept
proofiprotolyping in ops environment

NCC SPSR, 157, EO-1, EOS
AMI, HST, TRACE, €930,
IMAGE SOC

584 / Realtime Softwarce
Engincering

Bark Parr. Jay Putman. John
Donohue

Real-time ground mission data
systems for 1&T and on-orbit ops
{c.g.. s/c command & conirol,
launch and tracking services)

Sys. eng.& implementation, COTs
application, simulators, testbeds for
concept proof/prototyping in ops cnv.

HST. WFF, ISTP, IMAGE.
MAP. SMEX. TRACE,WIRE,
EO-1, 187, HITCHHIKER,
SPARTAN, EOS. NGST

385 / Computing Environments
and Tcchnology
Howard FErsertke, Steve Naus

Tools and services in support of
information management

Hands-on sys admin., network
manage., businessisupport tool
develop, WWW application

EOSDIS, IFMP, (630, C930.
HST, WSC, (250, C430, HST

586 / Science Data Systems
Marv Ann Esfundiari. Mary Reph

Scicnce data systems including
data processing, archival,
distribution, analysis & info man.

Sys. eng.& implementation, COTs
application & integration, testbeds,
Tototyping

FOSDIS. LS7. TRACE. TRMM
HST

587 / Advanced Data
Management and Analysis
M Estandiari (Acting). Jim Byrnes

Advanced concept development
for archival, retrieval, display,
dissemination of science data

Next-gen req. development, testbed tor
sys evaluation, prototype products

FAST. NEAR. WIND,
ULYSSES. €632, C686, C694,
€930, 0922

588,/Advanced Architeetures &
Autonomy
Doug MeCuistion (Actingy. Julie Breed)

Technology R&D focused on
space-ground automation sys. and
advanced architectures

Sys. eng & implementation, human-
computer eng., technology cvaluations,
concept prototypes, sw eng. methods

Table 1.

NCC. STAAC, SOMO, Code
SM. EOSDIS, MIDEX. NGST

The ISC has 4 simple but very critical Strategic Goals to achieve in the next 5 years:

1. Advance leading-edge information systems technology.

2. Clearly define the scope of ISC business, and deliver high value products and services that satisfy
customer needs.

3. Build a diverse, talented, innovative, energized, internationally recognized, workforce of employees
and managers.

4. Establish open, flexible, collaborative relationships with customers and partners.

These strategic goals are aligned with the Goddard Strategic Goals.

Role of the Software Engineering Laboratory in ISC

n

Given the external drivers such as “Agenda for Change “ which promulgated the creation of the ISC, the
SEL has an opportunity to leverage its capabilities to help the ISC meet its strategic goals and objectives.
There are several areas where the SEL can be an enabler for software process improvement:[Reference 3]:

e Build an improvement organization within the ISC that will increase the competency of its software
engineering professionals, thereby increasing the quality of Goddard software systems.
Model and characterize software systems in use on the ground and onboard spacecraft.
Transfer and help tailor proven development and maintenance technologies to new domains, internal
and external to GSFC.

As a result of Goddard’s organizational changes, a new vision and mission statement and new goals and
objectives have been established for the SEL. Over the past several months a series of workshops had been



conducted with the SEL Director’s to outline and define the new direction for the SEL and still maintain its
heritage over the past 20 plus years. The SEL’s new Vision and Mission statement shown in Figure 3,
emphasizes continuous software process improvement.

Software Engineering Laboratory Vision:

To be internationally recognized as a leader for applied research in Evolutionary
Software Engineering Process Improvement.

Software Engineering Laboratory Mission:

“Serve as a World Class Laboratory dedicated to evolutionary software
engineering process improvement and serve as a clearinghouse within GSFC for
software engineering best practices. And to foster the development of highly skilled
software engineers in the 1SC and in GSFC and contractor community through
continued education and training of software development practices and
methodologies.”

Mission Objectives:

1) To study, research and roll out products from our best practices and
methodologies.

2) To provide useable and applicable products aligned with customer needs.

3) To increase visibility, size and scope.

4) To partner with other software engineering organizations.

5) To serve as clearinghouse within ISC/GSFC for Software Engineering process
improvement information.

6) To educate the software engineering community on software engineering best
practices.

7) To identify resources for funds.

8) To develop quickie products e.g. “reusable abstractions” and modularize SEL
documents into a handbook format.

9) To develop strategies for rolling out practices to customers and immersing
customers in the process.

Figure 3

The current base of SEL activities include: management of databases and producing monthly reports,
development of WEB based forms to eliminate file transfer, maintenance of SEL Library and development
of Software Engineering Courses. Current research topics include Meta-process, Baseline Process and
Core Metrics development. Short term and long term goals for the SEL have been established. They are:

SEL Short-term Goals:

1)} Software Engineering Workshop

2) Complete ISC baseline study

3) Update SEL webpage

4) Develop customer focus teams

5) Increase GSFC visibility and interaction

SEL Long-term Goals:

1) Develop a full Software engineering training development program

2) Assist the ISC in obtaining CMM level 2 & 3

3) Establish partnerships with other software Engineering process improvement organizations




Figure 4 shows the relationship of the SEL with ISC. Under the new SEL structure, the ISC Branches and
Teams would work more closely with the SEL in defining current processes and developing improved
processes. The SEL analysts’ role would expand to encompass end-to-end systems development processes,
from requirements definition through maintenance and operations. In addition, new metrics will be
developed that include the complete lifecycle of the end-to-end systems development process. An example
of software technology products supporting the end-to-end mission system is shown in Figure 5.

Nadp Example ISC Technology in KC"‘“
Goddard Space Flight Center the End'tO‘end MISSIO" DAY
Science
Satellites

|- NGST Adaptive Scheduling
! - Real-time Weather Assessment
f for Remote Sensing Spacecraft

Data Archives

Science PI's [u
*
@ ‘/!/.HsTNZK Data Warehousing\\
- Remote Instrument Control R telv-Located
- NGST Scientist’s Expert Fgmo € y-b oca ePI P
Assistant emberor T | - SMEX GDS & Automation

{ i
. i
e i - Mission Ops Automation §
{ - Java-based Remote i

; Command & Control i

i

H

-

- S/C Emergency Response System

| - TRACE Automation & ]
| Remote Notification

i Remote Instrument Control ! .

Figure 5.

As a result of the expanded responsibilities, the SEL has already begun to baseline the ISC Branch’s
products and services and software development processes and team products. This effort will establish a
basis for measuring the impact of software process improvement measures that are implemented within the
ISC. SEL is also in the process of developing a series of lectures and courses that focus on the Software
Engineering Process incorporating the CMM philosophy. The SEL will also play a key role in helping the
ISC to achieve CMM levels 2 & 3 and the presence of the SEL in ISC also provides the potential to
ultimately achieve CMM levels 4 &3.

In summary, the 23 year history of the SEL has proven that long term focus on continuous improvement
can reduce costs and produce a better product. The SEL, as a research organization must continuously
adopt to the changing environment in which it exists. Expanding the scope and support activities of the
SEL will present a great challenge, however, it will position the ISC to be able to improve Goddard’s future
systems development efforts.
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Abstract

This paper describes a study performed at the Information System Center (ISC) in NASA
Goddard Space Flight Center. The ISC was set up in 1998 as a core competence center in
information technology. The study aims at characterizing people, processes and products of the
new center, to provide a basis for proposing improvement actions and comparing the center
before and after these actions have been performed. The paper presents the ISC, goals and
methods of the study, results and suggestions for improvement, through the branch-level portion
of this baselining effort.

Introduction

At the beginning of 1998, a major reorganization of software engineering functions took place
within the NASA Goddard Space Flight Center. A new “Information Systems Center” (ISC) was
created with the objective of concentrating and consolidating Goddard’s Information Technology
(IT) capabilities into one organizational unit.

Within the aegis of this new organization, sits the Software Engineering Laboratory (SEL) [1,7],
a twenty-three years old consortium of process and product improvement specialists from three
organizations: NASA Goddard itself, the University of Maryland and Computer Sciences
Corporation. The SEL had previously focused most of its efforts within the Flight Dynamics
Division (FDD), performing process and product improvement studies and software engineering
experiments. With the reorganization of software activities at Goddard, its scope now expands to
the entire 1SC. Therefore there was a need to better understand the wider context that the SEL
now found itself within.



Consequently, a “baseline” study was initiated by the SEL in April 1998. The aim of the baseline
was to characterize or profile the ISC in terms of its people, processes and products. Each branch
and many teams within the ISC were studied for the purpose of completing an initial baseline
study. We emphasize the word “initial” to indicate that this study is not a detailed baseline in the
sense of capturing extensive focussed data about one aspect of the ISC’s operations. Rather it is a
baseline that will provide an overall high-level profile of the new organization.

Many previous baselines have been conducted within the FDD, as well as at the level of Goddard
Code 500 [4], Goddard as a whole [5] and NASA as a whole [6]. The questionnaires developed
by the baselining team were heavily based on these earlier studies to enable comparison. Where
practical, this paper will compare data from ISC with earlier studies.

This paper documents preliminary data and observations that the SEL has made in baselining the
ISC. The ultimate goals of the baselining study are to identify areas for process and product
improvement of benefit to Goddard, as well as interesting and novel research areas to pursue.
This paper will begin by elaborating upon the goals of the study. It will continue by describing
the methods adopted (and their constraints), the data collected, and the preliminary results of the
work. The paper concludes with some recommendations for ISC and suggestions for future work
for the SEL.

The ISC
Quoting from the ISC home page [8]:

“The Information Systems Center (ISC) is an innovative center of expertise in the implementation of
seamless, end-to-end information systems in support of NASA programs and projects, and
specifically the GSFC Earth Science, Space Science and Technology focus areas. The ISC provides
leadership and vision in identifying and sponsoring new and emerging information systems
technologies.”

The ISC is organized in eight branches, each with a unique function. Refer to Figure 1for the
organization structure of ISC and Table 1 for the associated products and services. The meaning
of boxes line styles will be explained later. The work is organized in various manners: within
these branches exist teams that are producing software products and services, there are personnel
(and sometimes teams) matrixed to other ISC branches or other Codes at GSFC, and there are
cross-branch teams that serve all the ISC with representation from the branches. The detailed
organizational structure is explained in [3].

Certain terminology (noted in Italics) is used in this environment and in this paper, especially
terminology related to organizational structure. Basic organizational structure is broken down
from highest level to lowest, GSFC is divided into 9 directorates, including the Applied
Engineering and Technology Directorate (AETD), within that there are 5 Centers, including the
Information Systems Center, within that the eight branches mentioned above, within those
branches, teams of individuals supporting projects, such as the Earth Observing System (EOS).
Sometimes a person or persons is matrixed from one organizational entity to another, so that one
group manages the work, while the person(s) maintains their original organizational alliances.



Code 580
Information Systems Center

I | I I : I | I I
Code 581 || Codes82 || Code583 || Codess4 || Code85 || Codesgs || Code367 || Code 588
Systems Flight Mission Real-Time | | Computing | | Science Adv. Data Adv.
Integration & Software Applications Software Environments Data Management | | Architectures
Engineering Engineering | | &Technology Systems & Analysis | | & Automation

Figure 1 - Organizational Structure of the ISC

Branch Code

Branch Name

Products/Services

581 Systems Integration and End-to-end data systems engineering of
Engineering 1SC mission systems development
activities
582 Flight Software Embedded software products for on-
board data handling; management and
control of flight hardware
583 Mission Applications Off-line mission data systems
{command management, spacecraft
mission planning and scheduling,
science planning, etc.)
584 Real-Time Software Tools and services in support of
Engineering information management. Real-time
ground mission data systems for 1&T
and on-orbit ops (e.g., s/c command
and control, launch, and tracking
services)
585 Computing Environments Tools and services in support of
and Technology information management. Hands-on
system administration, network
management, WWW applications
586 Science Data Systems Data processing, archival distribution,
analysis and information management
for science data systems
587 Advanced Data Advanced concept development for
Management and Analysis archival, retrieval, display, and
dissemination of science data
588 Advanced Architectures Technology R&D focused on space-

and Automation

ground automation systems and
advanced architectures

Table 1. Products and Services of the ISC Branches




Goals for Baselining

The major objective of the baselining study is to gain an understanding of the ISC as to allow us
to identify areas for process and product improvement. The philosophy behind the effort is to
characterize and understand the new organization before attempting to introduce any new
technology or process improvements. From the understanding, we seek to find a basis to assess
improvements, which can then be packaged for wider integration into the business. Figure 2
highlights the role of baselining (the bottom rectangle) in the broader context of process and
product improvement according to the Experience Factory paradigm [1].

PACKAGE

Integrate the improvement into your business

» Update standards
+ Refine training
+ Tailor process based on experiments

Iterate ///////’—’

ASSESS

Select/define, implement, & evaluate an improvement locally,
Goals « Will particular reading techniques improve quality?

* Will OOT lead to higher reuse?
UNDERSTAND « Will a different testing technique reduce costs?

Gather, sift, and analyze data to build baselines

* Identify software characteristics
» Characterize process used
« Define goals

EXAMPLES

TIME >

Figure 2 - Role of Baselines in Process and Product Improvement

Methods Used

The following methods, already used in the COTS Study [9], were used.

First, a number of questions and measures have been developed, starting from the high level
goals and using the Goal Question Metric (GQM) approach [2], to collect information about
ISC’s processes, products and people. They gather both quantitative and qualitative information
— some of the data are numeric and highly factual (e.g. staff numbers), whereas other data
represent informed opinion (e.g., expectations of future change). The aim is to be able to
characterize the software products, processes and people within the organization, with adequate
qualitative context to meaningfully interpret the hard quantitative data.

Questions and measures have then been organized in a questionnaire and a structured interview
[10]. The interview being constrained to no more than 30 — 45 minutes covered the qualitative
data. The questionnaire was devoted to quantitative data that were less subject to interpretation.



To enforce consistency, guides for filling questionnaires and performing interviews were
developed too [10].

After validating these tools with pilots, they were used to collect data from branch heads and
team leaders. The process was the following.

During the interview, the Interviewer asks questions following the outline of the Interview
Guide. The Scribe takes notes and employs a tape recorder, if acceptable to the Interviewee, to
aid in preparation of the interview report. The Interviewee is told that the result of the interview
is the interview report, which will not be considered final until the Interviewee had read and
approved it. At the end of the interview the Scribe may ask some clarification questions. The
Interviewer gives a copy of the Questionnaire, which asks questions of a detailed, numeric nature
that don't lend themselves well to open-ended, face-to-face discussion to the Interviewee, and
requests that the Questionnaire be completed within two weeks.

After the interview, the Scribe prepares an interview report, consisting of brief summaries of the
Interviewee's responses to the questions on the standard Interview Guide. The Interviewer
reviews the notes. Once reviewed they are sent to the Interviewee for concurrence. At this stage
of the process, the interview report is considered approved. Tape recordings were not kept as the
approved interview report serves as the result of the interview.

At the end of the initial interview, the Interviewer schedules a follow-up interview. The purpose
of the follow-up is to go over the questionnaire that the interviewee has completed, and resolve
any items where either the questions weren't clear to the interviewee, or the responses are unclear
to the interviewer.

About the data

The baseline study collects data at two levels within the ISC: the branch and team levels. The
current status of the study is that we have completed the branch data collection and analysis, and
are currently finalizing the team-level data collection and the team-level analysis is in progress.
Therefore this paper will only report on the results from the branch-level data.

The branch-level data were collected from the management of each branch. Our aim at the
branch-level data collection stage was to build an overall characterization of the organization,
with a wide range of factors (e.g. process, people, and product) considered. The intent is that we
will perform more detailed baselines on specific factors in a subsequent study, as and when more
accuracy is required.

The consequence is that the data reported in this paper have varying degrees of reliability. In
some cases, they are actual data (e.g. head count). In other cases, they may be derived data. For
example, a question asking how much effort was spent on software maintenance versus
development was sometimes answered by managers going through their roster and counting how
many people did maintenance versus development. In other cases, the data may represent only
“guesstimates”. Sometimes we asked questions seeking data that they do not collect, so they had
to estimate. In all cases, we are dealing with a new organization, so there is not a body of
historical data, or even established data collection procedures in many cases.

As we analyze the data, we will report on the expected reliability.



Findings

Domains

Figure 3 presents a depiction of sample application domains in the ISC, in contrast to the more
focused domains of the FDD. Whereas the FDD was primarily concerned with attitude, orbit and
mission planning applications, the ISC must now be concerned with such diverse pursuits as
science data visualization and embedded flight software. The new ISC is a much more
heterogeneous organization than the FDD, so the need to understand the context of the data
collected is paramount. Direct comparison of branch to branch will be meaningless without an
appreciation of the context within which the data were collected.

Figure 3. Sample Application Domains in ISC and FDD

Domains and organization

As mentioned above, the Information Systems Center is organizated into eight branches. Figure
1 shows the basic organizational structure of the ISC. We have found that several branches
appear to have a functional domain focus (e.g. flight software), specifically these are 582, 583,
584 and 586, designated in Figure 1 with double borders. Those are contrasted with branches
that deal primarily with technology domains (e.g. advanced architectures), specifically 585,587
and 588. Code 581 is probably neither in the technology nor functional camp, they deal primarily
with the management of systems integration activities, this uniqueness is indicated in Figure 1
with a dashed border.



Matrixing and projects common to branches

In the questionnaire, branch management were asked to list the projects with which their branch
was involved. Figure 4 presents the common projects by branch. These are larger projects such
as the Hubble Space Telescope (HST) or Landsat-7, where several branches are involved.
Another question was the number of staff belonging to the branch but working outside it (or
matrixed). On average, 63% of ISC staff is matrixed. Both facts above suggest that the
organisation by branches is in some sense virtual, while the projects rather than the branches
control the process. This was also confirmed by comments from branch managers. An
implication of this for the SEL is that to introduce any process improvement, it would appear
necessary to consider how to influence the project to adopt the new technology.

581 582 583 584G S84W 585 586 587 588
HST ® ® ®

SMEX

EOS

EQO-1

ISTP ® o
mpg @
Landsat7 o

JSWITCH. e

ULDB

Figure 4 - Common Projects by Branch

Characterization of branches

Figure 5 presents the variation in staff numbers by branch. The total number of civil servants in
ISC is 249, based on an aggregation of the questionnaire data. This total has been verified by a
check against the overall ISC roster. The total number of contractors in ISC is over 308 — the
exact number is difficult to determine because some branches were unable to specify their exact
number of contractors’,

'Staffing Numbers - The count of civil servants and subcontractors working for a branch or team is not unique, as
they can report to an entity (say the team) but be paid by another (another team or branch or project). Most
interviewees did not have both data, and reported the best estimate they had. An effort to collect the most accurate
data is underway and will be reported in the ISC Baselining final report.



Staffing

(see note on staffing numbers)

100 +—— —— 1 |[dContractor Staff
B In-House Staff

Number of
employees 80

581 582 583 584W 584G 585 586 587 688 Average

Branch

Figure 5 - Staff Numbers by Branch

Most notable here is that there is one very large branch (582), more than 2/3’s of its personnel
are contractors; one very small branch (587), with no contractors whatsoever; and the rest are
mid-sized.

It is worthwhile to compare these figures to the SEL’s 1992 baseline of Code 500 [4]. Code 500
at that time contained responsibility for most of the same functional and technology domains that
the ISC contains today. Code 500, however, did not employ all of the GSFC software personnel
working in these functional and technology domains; the Engineering Directorate (Code 700)
employed some of them. On the other side of the balance sheet, however, we must note that
some of the 1992 employees of Code 500 were analysts and other “non-software” types. These
personnel were largely transferred to “Centers” other than the ISC in the recent GSFC
reorganization. With these differences between the Code 500 of 1992 and the ISC of today kept
in mind, let us proceed. In the 1992 baseline of code 500, it was found that approximately 1,600
of 5,000 staff (including contractors) were performing software-related functions (development,
maintenance, etc). The FDD had 700 staff, of which 250 were in software. This comparison (see
Figure 6) indicates that the ISC has approximately twice as many IT-related staff as FDD.
However, they are significantly smaller in size than were the code 500 software people in 1992.
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ilesoftwarestaff
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Code 500 FDD- ISC -
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Figure 6 — Code 500, FDD and ISC staff

Branch management was also asked to estimate effort distribution within three categories:
Development, Maintenance and Other. The results for this question are shown in Figure 7. The
average is weighted for head-counts in the respective branches. Notable contrasts here are 581°s
large amount of “other” activity — as a systems integration management branch they do hardly
any software development themselves. Also notable is 584 (Goddard real-time software)’s large
maintenance effort relative to development effort, and 586 (science data systems)’s large
development effort relative to maintenance.

In comparison with the code 500 baseline, maintenance effort in the code 500 was a lower
proportion of total effort (24%) as opposed to ISC’s 35% of effort devoted to maintenance. This
is probably explained by the smaller amount of legacy code that the ISC is responsible for
maintaining, in comparison to code 500.

Figure 8 turns our focus on software development effort alone, broken into the activities
‘requirements analysis’, ‘design’, ‘coding’, ‘testing’ and ‘other’. It is apparent that at this macro
process level, there is relatively little difference between ISC’s average development effort
distribution and that of the 1992 FDD. The ISC do a little more requirements, but that is the only
major difference. Again, we should stress that these data are management estimates, not the
actual recorded effort for each employee. In some cases, managers used heuristics such as
counting the number of testers in the organization to come up with the proportion of testing
being done. But did this then account for developers’ unit testing? We do not know.
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One possible interpretation of this data is that organizations that are more outwardly focused,
have had to put more effort into the requirements stage (and hence proportionally less in other
areas). Code 585 (science data systems) is an example of this — much of their work is for the
science community as a whole, a fairly diverse and remotely located user population. Code 583



(mission applications) has a much more defined user base and develops software such as oft-line
mission scheduling systems that can be precisely specified more easily up-front.

Some further observations about process, product and knowledge levels. Note that all branch
averages are weighted by the number of staff in the branch.

The percent of branches (including contractors) using “defined, written, advocated
software processes” varied from 10-95%, with an average of 45%

The percent of branches (including contractors) using “software standards” ranged from
0-95%, with an average of 57%

The number of COTS products used varied from 2-10 with an average of 5.1. Note that
these figures are probably deflated due to some branches listing “DBMSs”, or “lots” in
response to this question.

Overall the use of C++, Java and Ada for new development is increasing, relative to
Assembly, Fortran and C. 12 languages are used across ISC as a whole.

The most significant causes of errors in operational software were (in the following order
of importance): ‘changing requirements’, ‘missing requirements’, ‘misinterpreted
requirements’, ‘coding errors’, ‘interfaces’, ‘design errors’ and ‘environment problems’.

Most branches consider themselves well-informed about ‘prototyping’, ‘object-oriented
technology’, ‘inspections/walkthroughs’, and ‘COTS Integration’

Most branches consider themselves to have relatively little knowledge about ‘formal
methods’ and ‘defect causal analysis’, except 586 science data systems

Most branches consider themselves to have relatively little knowledge about ‘information
hiding’ except 584W real-time systems (Wallops)

All branches consider themselves to have relatively little knowledge about ‘Cleanroom
techniques’.

Only three branches produce ‘lessons learned’ documents at the end of a project.
Interestingly, one of these (584W) also produce a document called ‘a day in the life’
which serves to portray a typical day’s activities for a developer. This is considered
useful for training purposes.

In the process improvement area, several of the branches have ongoing activities:

Code 581 is funding this ISC baselining study, and is also leading the ISO 9000 ISC
certification. It is also pursuing an effort to define a core metrics set with the SEL and
Code 300.

Code 582 is encouraging reuse of both flight software and ground simulators, is looking
into additional opportunities for automatic code generation, and is pursuing the use of
COTS.

Code 583 has implemented the CORE TEAM approach, which is a type of process
improvement, and some parts of the branch are involved in some level of data collection.



e Codes 584 and 587 are currently defining their processes, as a prelude to improving them.
Code 584 expressed a desire to define a multi-level process structure, to facilitate
modularization of processes.

e Code 585, although it has not initiated a formal process improvement program, is using
guidelines in certain areas. The Code 585 personnel prefer to use guidelines, rather than
standards, because of the greater flexibility that guidelines provide.

e Code 586 is engaged in process management activities, including implementation of ISO
9001.

e Code 588, for the most part, has not initiated any process improvement activities; they
are, however, currently working on a Technology Management Plan that is oriented
toward 1SO 9000. Code 588 is also trying to move the designation of their ultimate
customer organization earlier in the process of making a system operational.

Analysis and further activities

The 1SC is a new organization that supports many of the key projects at NASA Goddard. 1t is
divided into management, technology and functional branches that represent a wide variety of
technical and functional domains. Here we try to summarize the main results of the baselining
effort and their implications for further SEL activities.

Diversity

The preliminary results of this baseline show that each branch is very different in terms of
personnel, process and product characteristics. The variations in effort distribution, languages
used, and products developed by the different branches provide surface indications of the
diversity among the branches. The implications are that it will not be possible to apply the same
models for cost and quality to each branch, as we could do to some extent within the more
homogeneous FDD. To understand how cost and quality relate, we must study them in the
context of each branch, team and/or project. Then, each model must be constructed and
calibrated to the given context in question. The development of different models however is not
the only challenge; these models must be capable of integration so that aggregated information
can be meaningfully provided for the whole of ISC.

The NASA Core Software Metrics Initiative

The SEL and GSFC/NASA’s Software Assurance Technology Center (SATC) [11] are currently
pursuing an initiative to define and implement a core set of software metrics, common to the
whole of NASA. For well over a year these two GSFC organizations have been working
together to define a core set of metrics.

The baselining has confirmed that there is an essential need for core metrics within the ISC. Due
to the diversity of the ISC, branches, teams and projects use different reporting units for metrics
such as product size, effort and defects. The core metrics initiative defines a set of metrics
capable of being used in different contexts, yet capable of providing a common abstraction level
to allow aggregation at the ISC level. This is essential not only for monitoring purposes, but also
for the model building needs mentioned above.
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At this time, a draft version of the Core Metrics set, developed by the SEL and SATC, is
currently under review by the NASA Software Working Group. At the time this paper is written
the SATC and SEL web pages do not specifically call out the Core Metrics, in future that
information should be assessable through SATC and SEL web pages [11,12]. An experiment
within the ISC to validate these Core Metrics would serve both the NASA Core Metric Initiative
and the ISC’s proactive drive toward process and product awareness and improvement.

Matrixing

The ISC is organized in branches and teams, but branch and team staff work, at 63% on average,
on projects outside the scope of ISC, managed and funded by NASA Codes other than 500. In
particular, 95% of the staff belonging to Code 582 is matrixed outside ISC.  This is not
surprising, as the ISC is meant to offer IT services to all of GSFC and NASA. However, a
number of issues are raised.

e System and software engineering. Many projects where matrixed staff works are system
projects where software is only a part. The system issues (processes, technologies,
interfaces) should be taken into account in software processes too.

e Ownership of processes and rights to modify. When projects are funded and ruled outside
ISC, ISC may or may not be free to decide on processes, standards, and organizations to
be used.

e Diffusion of information. Matrixed personnel could physically work outside ISC, with
increased difficulties in communication and diffusion of information about the SEL and
technology transfer or software process improvement projects.

The SEL could try to understand in more depth these issues with further studies. However, it
seems that, for the purposes of assessment, characterization, and model building, the team and
the projects are the more suitable units to be considered. This implies that, as projects and teams
are volatile, with a life span of months, measures and models should be highly versatile and
adaptive.

Also, the concept of Experience Factory, defined and used by the SEL in the past years, could
need some adaptation. Several levels of experience, and several levels of learning loops, can be
identified: at the individual, team, branch and ISC levels.

Finally, if projects and teams are volatile, and branches are virtual, individual persons are the
most stable and valuable resources to base process and product improvement on. Approaches
such as Watt Humphrey’s Personal Software Process (PSP) could be used and adapted to the ISC
context. Specifically, the PSP does not consider sharing experiences and improvements with
peers, and should be extended in this direction to integrate concepts from the Experience
Factory.

CoTs

All branches report the use of COTS. The SEL should support teams and branches in COTS
related activities: evaluation and selection, testing and certification, interaction with producer,
documentation and diffusion of information. The SEL’s experience in COTS processes will be
of benefit to the ISC and the diversity of the ISC offers opportunities for case studies to further

13



validate the COTS process model [9]. This study concluded with recommendations for further
work to build cost models, risk analysis, and process models. Since, COTS remains a buzzword
with different meanings for different people. Another action for the SEL is the definition of a set
of terms and classification tools for the different concepts and artifacts currently considered
under the umbrella term COTS.

Finally, COTS should be considered in the broader context of reuse and related technological
and organizational issues: domain analysis and engineering, product line engineering, reusable
libraries, frameworks, design patterns, mechanisms and standards (Com, Corba, Active-X, Java
RMLI, Java beans, etc.).

Internal technology transfer

There would seem to be opportunities for greater synergies within ISC to do internal technology
transfer so that the advanced technologies and research efforts of branches 585, 587 and 588 are
successfully transitioned into practice in branches 582, 583, 584 and 586.

The past work of the SEL within Goddard has shown the need to understand, assess and package
technology to insure its successful introduction. Possibly the SEL in code 581 can play a role in
furthering a controlled and systematic transfer of this technology to the functional branches, as
well as helping insure that the advanced technology branches work in relevant areas amenable to
future technology transfer.

The SEL could assist by defining a methodology to evaluate if and how a technology
successfully applied in one context (branch, team, project) can be transferred to another context.

Reuse and frameworks

Several products in ISC are developed and mantained for years and possibly customised in
different versions. The overall cost of a product during the complete service cycle can be
decreased by technologies such as architecture and framework-based reuse. For example Code
582 (flight software) is exploring this road by developing a new architectural design for on-board
shuttle navigation control.

The SEL could offer support to organize, measure and document such efforts with two main
goals. Promote the success of the reuse effort inside a branch. And acquire methodological
experience to replicate the same effort in other branches (see also the Internal Technology
Transfer subsection).

Requirements instability

Requirements, and specifically requirements instability, are a common source of problems for
ISC teams. Several lines of intervention are available for the SEL:

¢ Experimentation with novel techniques for requirements capture and management.

e Adaptation of and experimentation with of techniques for early detection of defects in
requirements, such as requirement reading techniques.

o Adaptation of and experimentation with new lifecycles for early verification of
requirements, such as prototyping, iterative lifecycles, joint application development.
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Abstract

Experimentation in software engineering is important but difficult. One reason it is so difficult is that there
are a large number of context variables, and so creating a cohesive understanding of experimental results
requires a mechanism for motivating studies and integrating results. This paper argues for the necessity of a
framework for organizing sets of related studies. With such a framework, experiments can be viewed as
part of common families of studies, rather than being isolated events. Common families of studies can
contribute to important and relevant hypotheses that may not be suggested by individual experiments. A
framework also facilitates building knowledge in an incremental manner through the replication of
experiments within families of studies.

Building knowledge in this way requires a community of researchers that can replicate studies, vary context
variables, and build abstract models that represent the common observations about the discipline. This
paper also presents guidelines for lab packages, meant to encourage and support replications, that
encapsulate materials, methods, and experiences concerning software engineering experiments.

1. Introduction

Experimentation in software engineering is necessary. Common wisdom, intuition, speculation and
proofs of concepts are not reliable sources of credible knowledge. On the contrary, progress in any
discipline involves building models that can be tested, through empirical study, to check whether the
current understanding of the field is correct'. Progress comes when what is actually true can be separated
from what is only believed to be true. To accomplish this, the scientific method supports the building of
knowledge through an iterative process of model building, prediction, observation, and analysis. It requires
that no confidence be placed in a theory that has not stood up to rigorous deductive testing [21]. That is,
any scientific theory must be (1) falsifiable, (2) logically consistent, (3) at least as predictive as other
competing theories, and (4) its predictions have been confirmed by observations during tests for
falsification. According to Popper, a theory can only be shown to be false or not yet false; researchers only
become confident in a theory when it has survived numerous attempts made at its falsification. This
paradigm is a necessary step for ensuring that opinion or desire does not influence knowledge.

Experimentation in software engineering is difficult. Carrying out empirical work is complex and time
consuming; this is especially true for software engineering. Unlike manufacturing, we do not build the
same product, over and over, to meet a particular set of specifications. Software is developed and each

! For the purpose of this paper, we use the definitions of some key terms from [15] and [1]. An empirical
study, in a broad sense, is an act or operation for the purpose of discovering something unknown or of
testing a hypothesis, involving an investigator gathering data and performing analysis to determine what the
data mean. This covers various forms of research strategies, including all forms of experiments, qualitative
studies, surveys, and archival analyses. An experiment is a form of empirical study where the researcher
has control over some of the conditions in which the study takes place and control over the independent
variables being studied; an operation carried out under controlled conditions in order to test a hypothesis
against observation. This term thus includes quasi-experiments and pre-experimental designs.

A theory is a possible explanation of some phenomenon. Any theory is made up of a set of hypotheses. A
hypothesis is an educated guess that there exists (1) a (causal) relation among constructs of theoretical
interest; (2) a relation between a construct and observable indicators (how the construct can be observed).
A model is a simplified representation of a system or phenomenon; it may or may not be mathematical or
even formal; it can be a theory.



product is different from the last. So, software artifacts do not provide us with a large set of data points
permitting sufficient statistical power for confirming or rejecting a hypothesis. Unlike physics, most of the
technologies and theories in software engineering are human-based, and so variation in human ability tends
to obscure experimental effects. Human factors tend to increase the costs of experimentation while making
it more difficult to achieve statistical significance.

Abstracting conclusions from empirical studies in software engineering research is difficult. An
important reason why experimentation in software engineering is so hard is that the results of almost any
process depend to a large degree on a potentially large number of relevant context variables. Because of
this, we cannot a priori assume that the results of any study apply outside the specific environment in
which it was run. For isolated studies, even if they are themselves well-run, it is difficult to understand how
widely applicable the results are, and thus to assess the true contribution to the field.

As an example, consider the following study:

e Basili/Reiter. This study was undertaken in 1976 in order to characterize and evaluate the
development processes of development teams using a disciplined methodology. The effects of the
team methodology were contrasted with control groups made up of development teams using an "ad
hoc" development strategy, and with individual developers (also "ad hoc"). Hypotheses were proposed:
that (BR1) a disciplined approach should reduce the average cost and complexity (faults and rework)
of the process and (BR2) the disciplined team should behave more like an individual than a team in
terms of the resulting product. The study addressed these hypotheses by evaluating particular methods
(such as chief programmer teams, top down design, and reviews) as they were applied in a classroom
setting. [7]

This study, like any other, required the experimenters to construct models of the processes studied, models
of effectiveness, and models of the context in which the study was run. Replications that alter key attributes
of these models are then necessary to build up knowledge about whether the results hold under other
conditions. Unfortunately, in software engineering, too many studies tend to be isolated and are not
replicated, either by the same researchers or by others. Basili/Reiter was a rigorous study, but
unfortunately never led to a larger body of work on this subject. The specific experiment was not
replicated, and the applicability of the hypotheses in other contexts was not studied. Thus it was never
investigated whether the results hold, for example:
o for software developers at different levels of experience (the original experiment used university
students);
if development teams are composed differently (the original experiment used only 3-person teams);
e if another disciplined methodology had been used (i.e., were the benefits observed due to the particular
methodology used in the experiment, or would they be observed for any disciplined methodology?).

2. A Motivating Example: Software Reading Techniques

Yet even when replications are run, it's hard to know how to abstract important knowledge without a
framework for relating the studies. To illustrate, we present our work on reading techniques. Reading
techniques are procedural techniques, each aimed at a specific development task, which software
developers can follow in order to obtain the information they need to accomplish that task effectively [2, 3].
We were interested in studying reading techniques in order to determine if beneficial experience and work
practices could be distilled into procedural form, and used effectively on real projects. We felt that reading
techniques were of relevance and value to the software engineering community, since reading software
documents (such as requirements, design, code, etc.) is a key technical activity. Developers are often called
upon to read software documents in order to extract specific information for important software tasks, e.g.
to read a requirements document in order to find defects during an inspection, or an Object-Oriented design
in order to identify reusable components. However, while developers are usually taught how to write
software documents, the skills required for effecting reading are rarely taught and must be built up through
experience. In fact, we felt that research into reading could provide a model for how to effectively write
documents as well: by understanding how readers perform more effectively it may be possible to write
documents in a way that facilitates the task.



However, the concept of reading techniques cannot be studied in isolation. Like any other software process,
reading techniques must be tailored to the environment in which they are run. Our aim in this research was
to generate sets of reading techniques that were procedurally defined, tailorable to the environment, aimed
at accomplishing a particular task, and specific to the particular document and notation on which they
would be applied. This has led a series of studies in which we evaluated the following types of reading
techniques:

e Defect-Based Reading (DBR) focused on defect detection in requirements, where the requirements
were expressed using a state machine notation called SCR [13, 22].

e Perspective-Based Reading (PBR) also focused on defect detection in requirements, but for
requirements expressed in natural language [4, 16].

e Use-Based Reading (UBR) focused on anomaly detection in user interfaces [27].

e Seccond Version of PBR (PBR2) consisted of new techniques that were more procedurally-oriented
versions of the earlier set of PBR techniques. In particular, we made the techniques more specific in all
of their steps [24].

e Scope-Based Reading (SBR) consisted of two reading techniques that were developed for learning
about an Object-Oriented framework in order to reuse it {10, 23].

A framework that makes explicit the different models used in these experiments would have many benefits.
Such a framework would document the key choices made during experimental design, along with their
rationales. The framework could be used to choose a focus for future studies: i.e., help determine the
important attributes of the models used in an experiment, and which should be held constant and which
varied in future studies. The ultimate objective is to build up a unifying theory by creating a list of the
specific hypotheses investigated in an area, and how similar or different they all are.

Using an organizational framework also allows other experimenters to understand where different choices
could have been made in defining models and hypotheses, and raises questions as to their likely outcome.
Because these frameworks provide a mechanism by which different studies can be compared, they help to
organize related studies and to tease out the true effects of both the process being studied and the
environmental variables.

3. The GQM Goal Template as a Tool for Experimentation

Examples of such organizational frameworks do exist in the literature, e.g. [9, 17, 20]. For the purpose of
this paper we find the Goal/Question/Metric (GQM) Goal Template [8] useful. The GQM method was
defined as a mechanism for defining and interpreting a set of operational goals using measurement. It
represents a top-down systematic approach for tailoring and integrating goals with models of software
processes, products, and quality perspectives, based upon the specific needs of a project and organization.

The GQM goal template is a tool that can be used to articulate the purpose of any study. It ties together the
important models, and provides a basis against which the appropriateness of a study's specific hypotheses,
and dependent and independent variables, may be evaluated. There are five parameters in a GQM goal
template:
o object of study: a process, product or any other experience model
o purpose: to characterize (what is it?), evaluate (is it good?), predict (can I estimate something in
the future?), control (can I manipulate events?), improve (can | improve events?)
e focus: model aimed at viewing the aspect of the object of study that is of interest, e.g., reliability
of the product, defect detection/prevention capability of the process, accuracy of the cost model
o point of view: e.g., the perspective of the person needing the information, e.g., in theory testing the
point of view is usually the researcher trying to gain some knowledge
e context- models aimed at describing environment in which the measurement is taken

For example, the goal of the Basili/Reiter study, previously described, might be instantiated as:
To analyze the development processes of a 1) disciplined-methodology team approach, 2) ad hoc team
approach, and 3) ad hoc individual approach
for the purpose of characterization and evaluation



with respect to cost and complexity (faults and rework) of the process
from the point of view of the developer and project manager
in the context of an advanced university classroom

Due to the nature of software engineering research, instantiated goals tend to show certain similarities. The
purpose of studies is often evaluation; that is, researchers tend to study software technologies in order to
assess their effect on development. For our purposes, the point of view can be considered to be that of the
researcher or knowledge-builder. While studies can be run from the point of view of the project manager,
i.e. requiring some immediate feedback as to effects on effort and schedule, published studies have usually
undergone additional, post-hoc analysis.

The remaining fields in the template require the construction of more complicated models, but still show
some similarities. The object of study is often (but not always) a process; researchers are often concerned
with evaluating whether or not a particular development process represents an improvement to the way
software is built. (E.g.: Does Object-Oriented Analysis lead to an improved implementation? Does an
investment in reviews lead to less buggy, more reliable systems? Does reuse allow quality systems to be
built more cheaply?) When the object of study is a process, the focus of the evaluation is the process’ effect.
The experimenter may measure its effect on a product, that is, whether the process leads to some desired
attribute in a software work product. Or, the experimenter may attempt to capture its effect on people, e.g.
whether practitioners were comfortable executing the process or found it tedious and infeasible. Finally, the
context field should include a large number of environmental variables and therefore tends to exhibit the
most variability. Studies may be run on students or experts; under time constraints, or not; in well-
understood application domains, or in cutting-edge areas. There are numerous such variables that may
influence the results of applying a technique.

For the remainder of this paper, we will illustrate our conclusions by concentrating on studies that
investigate process characteristics with respect to their effects on products. A GQM template for this class
of studies is:
Analyze processes to evaluate their effectiveness on a product from the point of view of the
knowledge builder in the context of (a particular variable set).

For particular studies in this class, constructing a complete GQM template requires making explicit the
process (object of study), the effect on the product (focus), and context models in the experiment. Making
these models explicit is necessary in order to understand the conditions under which the experimental
results hold.

For example, consider the GQM templates for the list of reading technique experiments described in the

previous section. There are many ways of classifying processes, but we might first classify processes by

scope as:

¢  Techniques (processes that can be followed to accomplish some specific task),

e Methods® (processes augmented with information concerning when and how the process should be
applied),

e Life Cycle Models (processes which describe the entire software development process).

Each of these categories could be subdivided in turn. The set of techniques, for example, could be classified

based on the specific task as: Reading, Testing, Designing, and so on. We have found it helpful to think of

the range of values as organized in a hierarchical fashion, in which more general values are found at the top

of the tree, and each level of the tree represents a new level of detail. (Figure 1)

Selecting a particular type of process for study, our GQM template then becomes:
Analyze reading techniques to evaluate their effectiveness on a product from the point of view of
the knowledge builder in the context of a particular variable set

? The definitions of "technique” and "method" are adapted from [5].
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Figure 1: A portion of the hierarchy of possible values for describing software

processes.

The reading technique experiments were concerned with studying the effect of the reading technique on a
product. So, the model of focus needs to specify both how effectiveness is to be measured and the product
on which the evaluation is performed.We find it useful to divide the set of effectiveness measures into
analysis and construction measures, based on whether the goal of the process is to analyze intrinsic
properties of a document or to use it in building a new system. Each of these categories can be further
broken down into more specific types of process goals, for which different effectiveness measures may
apply (Fig. 2). For example, the effectiveness of a process for performing maintenance can be evaluated by
how that process effects the cost of making a change to the system. The effectiveness of a process for
detecting defects in a document can be measured by the number of faults it helps find. Of course, many
more measures exist than will fit into Figure 2. For instance, rather than measure the number of faults a
defect detection process yields, it might be more appropriate to measure the number of errors’, or the
amount of effort required, among other things.

Effectiveness

Analysis Construction
Defect A :
Usability N Reuse Maintenance
Detection
# of 4§ of 4 of Cost of Cost of Cost of
faults errors ancmalies finding integrating making a
detected detected detected components components change

Figure 2: A portion of the hierarchy of possible values for
describing the effectiveness of software processes

Similarly, a software document can be classified according to the model of a software system it contains (a
relatively well-defined set) and further subdivided into the specific notations that may be used (Fig.3). The
main purpose of organizing the possible values hierarchically is to organize a conception of the problem
space that can be used by others for classifying their own experiments. The actual criteria used are
somewhat subjective; naturally there are multiple criteria for classifying processes, effectiveness measures,
and software documents, but we have selected just those that have contributed to our conception of reading
techniques.

3 Here we are using the terms "faults” and "errors" according to the IEEE standard definitions [14], in
which "fault" refers to defects appearing in some artifact while "error” refers to an underlying human
misconception that may be translated into faults.
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Figure 3: A portion of the hierarchy of possible values for describing software

documents.

Thus a GQM template for the PBR experiment could be:
Analyze reading techniques to evaluate their ability to detect defects in a Requirements Document
written in English from the point of view of the knowledge builder in the context of a particular
variable set .

A GQM goal is not meant to be a definitive description, but reflects the interests and priorities of the
experimenter. If we were to study the process model for the reading techniques in each experiment in more
detail, we would see that each technique is tailored to a specific task (e.g., analysis or construction, etc.)
and to a specific document. This is what characterizes the reading techniques and distinguishes them from
one another. Thus the process goals used to classify measures of effectiveness in Figure 2 can be easily
adapted to describe the processes themselves (Figure 4). The distinction between analysis and construction
process goals can apply directly to processes. That is, we hypothesize that analysis tasks differ sufficiently
from construction tasks that, along with differences in the way they may be evaluated for effectiveness,
there may also be different guidelines used in their construction. Thus figures 2 and 3 can also be
mechanisms for identifying process model attributes. They should be accounted for in the process model as
well as the effect on process.

Process Goal

Analysis Construction

Defect Usability e Reuse Maintenance

Detection

Figure 4: A portion of the hierarchy of possible values for describing the goal of

a software engineering process.

Thus we can say that we are:
analyzing a reading technique for the purpose of evaluating its ability to detect defects in a natural
language requirements document

or we can say that we are:
analyzing a reading technique ailored to defect detection in natural language requirements for the
purpose of evaluation.

It depends on whether we are emphasizing the definition of the process or of its effectiveness.

In linking goal templates to hypotheses, we can think of the process model (object of study) as the
independent variable, the effect on product (focus) as the dependent variable, and the context variables as
the variables that exist in the environment of the experiment. The differences or similarities between
experimental hypotheses can then be described in terms of these hierarchies of possible values. For
example, consider the studies of DBR and PBR. In both cases, the process model was focused on the same



task (defect detection); although the notation differed, both were also focused on the same document
(requirements). If all other attributes for process, product, and context models were held constant, we could
begin to think of hypotheses at a higher level of abstraction. That is, instead of the hypothesis:
Subjects using a reading technique tailored to defect detection in natural language
requirements are more effective than subjects using ad hoc techniques for this task
The following hypothesis might be more useful:
Subjects using reading techniques tailored to defect detection in requirements are more
effective than subjects using ad hoc techniques for this task.
The difference between these hypotheses is that the focus of the study is described at a higher level of
abstraction for the second hypothesis (requirements) than for the first (natural language requirements).

This difference in abstraction makes the second hypothesis more difficult to test. In fact, probably no single
study could ever give us overwhelming evidence as to its validity, or lack thereof. Testing the second
hypothesis would require some idea of what types of requirements notation are of interest to practitioners.
Building up a convincing body of evidence requires the combined analysis of multiple studies of specific
reading techniques for defect detection in requirements. But the effort required to formulate the hypothesis
and begin building a body of evidence helps advance the field of software engineering. At best, the
evidence can lead to the growth of a body of knowledge, containing basic and important theories
underlying some aspect of the field. At worst, the effort spent in specifying the models forces us to think
more deeply about the relevant ways of characterizing software engineering models that we, as researchers,
are implicitly constructing anyway.

The above discussion should not be taken to imply that the attributes identified in Figures 1 through 4 are
the only ones that are important, or for which hierarchies of possible values exist. To choose another
example, in specifying the model of the context it is almost always important to characterize the experience
of the subjects of the experiment. The most appropriate way of characterizing experience depends on many
things; two possibilities are proposed in Figure 5.

Experience

Students Professicnals

Experience

Never used Learned Applied Applied Applied
process process in a process on process on 2- process on >3
before class one project 3 projects projects

Figure 5: Two possible value hierarchies for measuring subject experience.

The trees shown in Figure 5 present two different ways of characterizing experience. The first is a simpler
way of characterizing the attribute that distinguishes only between subjects who are still learning software
engineering principles versus those who have applied them on real projects. The second hierarchy attempts
to place finer distinctions on the amount of experience a subject has applying a particular process. Each
may be appropriate to different circumstances.[FS1]

4. Replicating Experiments

In preceding sections of this paper, we have tried to raise several reasons why families of replicated
experiments are necessary for building up bodies of knowledge about hypotheses. Another reason for
running replications is that they can increase the amount of confidence in results by addressing certain
threats to validity: Internal validity defines the degree of confidence in a cause-effect relationship between
factors of interest and the observed results, while external validity defines the extent to which the



conclusions from the experimental context can be generalized to the context specified in the research
hypothesis [11]. In this section, we discuss replications in more detail and look at the practical
considerations that result.

Our primary strategy for supporting replications in practice has been the creation of lab packages, which
collect information on an experiment such as the cxperimental design, the artifacts and processes used in
the experiment, the methods used during the experimental analysis, and the motivation behind the key
design decisions. Our hope has been that the existence of such packages would simplify the process of
replicating an experiment and hence encourage more replications in the discipline. Several replications
have been carried out in this manner and have contributed to a growing body of knowledge on reading
techniques.

4.1. Types of Replications

Since we consider that replications may be undertaken for various reasons, we have found it useful to
enumerate the various reasons, each of which has its own requirements for the lab package. In our view the
types of replications that need to be supported can be grouped into 3 major categories:

1. Replications that do not vary any research hypothesis. Replications of this type vary none of the
dependent or independent variables of the original experiment.

1.1. Strict replications (i.e. replications that duplicate as accurately as possible the original
experiment). These replications are necessary 1o increase confidence in the validity of the
experiment. They demonstrate that the results from the original experiment are repeatable, and
have been reported accurately by the original experimenters.

1.2. Replications that vary the manner in which the experiment is run. These studies seek to
increase our confidence in experimental results by addressing the same problem as previous
experiments, but altering the details of the experiment so that certain internal threats to validity
are addressed. For example, a replication may vary the order of activities to avoid the possibility
that results depend not on the process used, but on the order in which activities in the experiment
are completed.

The attempt to compensate for threats to internal validity may also lead to other types of changes.
For example, a process may be modified so that the researchers can assess the amount of process
conformance of subjects. Although the aim of the change may have been to address internal
validity, the new process should be evaluated in order to understand whether unanticipated effects
on process effectiveness have resulted. Thus such a replication would fall into the second major
category, discussed below.

2. Replications that vary the research hypotheses. Replications of this type vary attributes of the
process, product, and context models but remain at the same level of specificity as the original
experiment.

2.1. Replications that vary variables intrinsic to the object of study (i.e. independent variables).
These replications investigate what aspects of the process are important by systematically varying
intrinsic properties of the process and examining the results. This type of experiment requires the
process to be supplied in sufficient detail that changes can be made. This implies that the original
experimenters must provide the rationales for the design decisions made as well as the finished
product. For example, researchers may question whether the specificity at which the process is
described affects the results of applying the process. In this sense, the study of PBR2 may be seen
as a replication of the study of PBR, in which the level of specificity of the process was varied
but all other attributes of the process model remained the same.

2.2. Replications that vary variables intrinsic to the focus of the evaluation (i.e. dependent
variables). Replications of this type may vary the ways in which effectiveness is measured, in
order to understand for what dimensions of a task a process results in the most gain. For example,
a replication might choose another effectiveness measure from those listed in Figure 2,
investigating whether a defect detection process is more beneficial for finding errors than faults.



Other aspects of the focus model might be varied instead, e.g. a process might be evaluated on a
document of the same type but different notation to see if it is equally effective (see Figure 3).

2.3. Replications that vary context variables in the environment in which the solution is
evaluated. These studies can identify potentially important environmental factors that affect the
results of the process under investigation and thus help understand its external validity. For
example, replications may be run using the same process and product models as the original
experiment but on professionals instead of students (see Figure 5) to see if the same results are
obtained.

3. Replications that extend the theory. These replications help determine the limits to the effectiveness
of a process, by making large changes to the process, product, and/or context models to see if basic
principles still hold. We discussed replications in the previous category as replacing the value of some
variable (e.g. document on which the process was applied, Figure 3) with another, equally specific
value (e.g. SCR requirements instead of English-language requirements). Replications in this category,
however, can be thought of as replacing an attribute of a process, product, or context model with a
value at a higher level of abstraction (i.e. from a higher level in the hierarchy). Again using Figure 3,
researchers may choose to study whether a type of process is applicable to requirements documents in
general, rather than limiting their scope to a specific kind. The type of hypotheses associated with such
replications was discussed in section 3.

4.2 Implications for Lab Package Design

In software engineering research, there has been a movement toward the reuse of physical artifacts and
concrete processes between experiments. This is indeed a useful beginning. The cost of an experiment is
greatly increased if the preparation of multiple artifacts is necessary. Creating artifacts which are
representative of those used in real development projects is difficult and time consuming. Reusing artifacts
can thus reduce the time and cost needed for experimentation. A more significant benefit is that reuse
allows the opportunity to build up knowledge about the actual use of particular, non-trivial artifacts in
practice. Thus replications (and experimentation in general) could be facilitated if there were repositories
of reusable artifacts of different types (e.g. requirements) which have a history of reuse and which,
therefore, are well understood. (A model for such repositories could be the repository of system
architectures [12], where the relevant attributes of each design in the repository are known and described.)

A first step towards this goal is the construction of web-based laboratory packages. At the most basic level,
these packages allow an independent experimenter to download experimental materials, either for reuse or
for better understanding. In this way, these packages support strict replications (as defined in section 4.1),
which require that the processes and artifacts used in the original experiment be made available to
independent researchers.

However, web-based lab packages should be designed to support more sophisticated types of replications
as well. For example, packages should assist other experimenters in understanding and addressing the
threats to validity in order to support replications that vary some aspects of the experimental setup. Due to
the constraints imposed by the setting in which software engineering research is conducted, it is almost
never possible to rule out every single threat to validity. Choosing the “least bad” set of threats given the
goal of the experiment is necessary. Lab packages need to acknowledge this fact and make the analysis of
the constraints and the threats to validity explicit, so that other studies may use different experimental
designs (that may have other threats to validity of their own) to rule out these threats.

Replications that seek to vary the detailed hypotheses have additional requirements if the lab package is to
support them as well. For example, in order for other experimenters to effectively vary attributes of the
object of study, the original process must be explained in sufficient detail that other researchers can draw
their own conclusions about key variables. Since it is unreasonable to expect the original experimenters to
determine all of the key variables a priori, lab packages must provide rationales for key experimental
context decisions so that other experimentalists can determine feasible points of variation of interest to
themselves. Similarly, lab packages must specify context variables in sufficient detail that feasible changes



to the environment can be identified and hypotheses made about their effects on the results.

Finally, in order to build up a body of knowledge about software engineering theories, researchers should
know which experiments have been run that offer related results. Therefore, lab packages for related
experiments should be linked, in order to collect different experiments that address different areas of the
problem space, and contribute evidence relevant to basic theories. The web is an ideal medium for such
packages since links can be added dynamically, pointing to new, related lab packages as they become
available. Thus it is to be hoped that lab packages are “living documents” that are changed and updated to
reflect our current understanding of the experiments they describe.

Lab packages have been our preferred method for facilitating the abstraction of results and experiences
from series of well-designed studies. Interested readers are referred to existing examples of lab packages:
[25, 26]. By collecting detailed information and results on specific experiments, they summarize our
knowledge about specific processes. They record the design and analysis methods used and may suggest
new ones. Additionally, by linking related studies they can help experimenters understand what factors do
or do not impact effectiveness.

4.3. The Experimental Community

A group of researchers, from both industry and academia, has been organized since 1993 for the purpose of
facilitating the replication of experiments. The group is called ISERN, the International Software
Engineering Research Network, and includes members in North America, Europe, Asia, and Australia.
ISERN members publish common technical reports, exchange visitors, and organize annual meetings to
share experiences on software engineering experimentation’. They have begun replicating experiments to
better understanding the success factors of inspection and reading.

The Empirical Software Engineering journal has also helped build an experimental community by
providing a forum for publishing descriptions of empirical studies and their replications. An especially
noteworthy aspect of the journal is that it is open to publishing replicated studies that, while rigorously
planned and analyzed, yield unexpected results that did not confirm the original study. Although it has
traditionally been difficult to publish such “unsuccessful” studies in the software engineering literature, this
knowledge must be made available if the community is to build a complete and unbiased body of
knowledge concerning software technologies.

5. Conclusions

The above discussion leads us to propose that the following criteria are necessary before we can begin to

build up comprehensive bodies of knowledge in areas of software engineering:

1. Hypotheses that are of interest to the software engineering community and are written in a context that
allow for a well defined experiment;

2. Context variables, suggested by the hypotheses, that can be changed to allow for variation of the
experimental design (to make up for validity threats) and the context of experimentation;

3. A sufficient amount of information so that the experiment can be replicated and built upon; and

4. A community of researchers that understand experimentation, the need for replication, and are willing
to collaborate and replicate.

With respect to the Basili/Reiter study introduced in section 1, we can note that while it satisfied criteria |
and 3, it failed with respect to criteria 2 and 4. It was not suggested by the authors that other researchers
might vary the design or manipulate the processes or criteria used for evaluation (although the analysis of
the data was varied in a later study [6]). Nor was there a community of researchers willing to analyze the
hypotheses even if suggestions for replication had been made.

In contrast, the set of experiments on reading, discussed in a working group at the 1997 annual meeting of

4 More information is available at the URL http://wwwagse.informatik.uni-ki.de/ISERN/isern.html
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ISERN [18], is an example that we have built up a body of knowledge by independent researchers working
on different parts of the problem and exposing their conclusions to different plausible rival hypotheses. We
have shown in this paper that experimental constraints in software engineering research make it very
difficult, and even impossible, to design a perfect single study. In order to rule out the threats to validity, it
is more realistic to rely on the "parsimony" concept rather than being frustrated because of trying to
completely remove them. This appeal to parsimony is based on the assumption that the evidence for an
experimental effect is more credible if that effect can be observed in numerous and independent
experiments each with different threats to validity [11].

A second conclusion is that empirical research must be a collaborative activity because of the huge number
of problems, variables, and issues to consider. This complexity can be faced with extensive brainstorming,
carefully designing complementary studies that provide coverage of the problem and solution space, and
reciprocal verification.

It is our contention that interesting and relevant hypotheses can be identified and investigated effectively if
empirical work is organized in the form of families of related experiments. In this paper, we have raised
several reasons why such families are necessary:

e To investigate the effects of alternative values for important attributes of the experimental models;

e To vary the strategy with which detailed hypotheses are investigated;

e To make up for certain threats to validity that often arise in realistically designed experiments.

Discussion within the experimental community is also needed to address other issues, such as what
constitutes an “acceptable” level of confidence in the hypotheses that we address as a community. By
running carefully designed replications, we can address threats to validity in specific experiments and
accumulate evidence about hypotheses. However, we are unaware of any useful and specific guidelines
that concern the amount of evidence that must be accumulated before conclusions can confidently be drawn
from a set of related experiments, in spite of the existence of specific threats. More discussion within the
empirical software engineering community as to what constitutes a sufficient body of credible knowledge
would be of benefit.

Building up a body of knowledge from families of experiments has the following benefits for the software

engineering researcher:

e It allows the results of several experiments to be combined in order to build up our knowledge about
software processes.

e It increases the effectiveness of individual experiments, which can now contribute to answering more
general and abstract hypotheses.

e It offers a framework for building relevant practical software engineering knowledge, organized
around the GQM goal template or another framework from the literature.

e It provides a way to develop and integrate laboratory manuals, which can facilitate and encourage the
types of replications that are necessary to expand our knowledge of basic principles.

e It helps generate a community of experimenters, who understand the value of, and can carry out, the
needed replications.

The ability to carry out families of replications has the following benefits for the software engineering

practitioner:

e It offers some relevant practical SE knowledge; fully parameterizing process, product, and context
models allows a better understanding of the environment in which the experimental results hold.

e It provides a better basis for making judgements about selecting process, since practitioners can match
their development context to the ones under which the processes are evaluated.

e It shows the importance of and ability to tailor “best practices”, that is, it shows how software
processes can be altered by meaningful manipulation of key variables.

e It provides support for defining and documenting processes, since running related experiments assists
in determining the important process variables.

e It allows organizations to integrate their experiences by making explicit the ways in which experiences
differ (i.e. what the relevant process, product, and context models are) or are similar, and allowing the



abstraction of basic principles from this information.
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Culture Conflicts in Software Engineering Technology Transfer

Marvin V. Zelkowitz’ Dolores R. Wallace David W. Binkley
Department of Computer Science and Information Technology Laboratory Computer Science Department
Inst. for Advanced Computer Studies  Natl. Inst. of Standards and Technology Loyola College

University of Maryland Gaithersburg, Maryland 20899 Baltimore, Maryland

College Park, Maryland 20742 and Information Technology Lab.
and Fraunhofer Center - Maryland Natl. Inst. of Standards and Technology
College Park, Maryland 20742 Gaithersburg, MD 20899
Abstract

Although the need to transition new technology to improve the process of developing
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